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DIFFUSION CHARGING OF PARTICLES IN 
ONE-DIMENSIONAL WEAKLY IONIZED AEROSOL FLOWS* 

G.L. SEDOVA, A.V. FILIPPOV AND L.T. CHERNYI 

Electrohydrodynamics, 6 used in /l, 2/ to study one-dimensional flows of aerosol par- 
ticles carrying a bipolar charge in electric field , in the case whenthe,parameters of the 
electrohydrodynamic (EHD) interaction between the phases are small. It is assumed that the 
radius of the aerosol particles is small and that the charging process is governed by the 
thermal motion of the ions towards their surface. The case of large Peclet numbers is con- 
sidered, the numbers constructed in accordance with the characteristic dimension of the problem, 
i.e. by neglecting the contribution of diffusion towards the total macroscopic flows of the 
ions. The reaction rate at which the ions transfer their charge to the particles, is assumed 
to be finite. A digital computer is used to study the dependence of the flow parameters on 
the reaction rate constant and the particle density. The results of the calculations are 
compared with the analytic solution of the problem obtained for low-concentration aerosols in 
the case of large electrical Reynolds numbers. 

EHD flows of weakly ionized aerosols with volume ion sources occur in various natural and 
technological processes caused, for example, by external radioactivity /l-3/. In such flows 
the particles of the disperse phase can become charged as a result of precipitation of ions 
of predominantly one sign. In order to study the special features of the interphase charge 
transfer in weakly ionized aerosols, in the presence of volume ionization, it is best to study 
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their one-dimensional flows. This itself is of interest, since nearly one-dimensional flows 
are encountered in a number of EHD systems /4/. 

Let us consider, in the half-space x>O, a one-dimensional steady flow of a weakly 
ionized aerosol along the z axis of a Cartesian coordinate system. Let the electric field 
strength be also directed along the 5 axisandlet the parameters of EHD interaction for the 
gas and disperse phase be small. Then we can assume that the velocities of the gas and aerosol 
particles are the same and equal to U= con&> O. The ion concentration distribution n*:, the 

charge of the particles ep and the electric field strength E are described by the following 
system of equations: 

k [n* (U + bE)] = B - an+tz_ - npik (1) 

dE _= 
ds 

4% ccn+- en_+ CRAZY), u d2 = e O+ - i-) 

i*=+4jm*epb[(1t~)ezp(~~)--]-’ 

Here b is the absolute value of the ionic mobility coefficient, which is assumed to be 
the same for ions of both signs and is connected with the coefficient of ionic diffusion D 
by the Einstein relation, fi is the local rate of ionization of the gas, cz is the ion re- 
combination coefficient and e is the absolute value of the electric charge on the ion. The 
expression describing the ion flows towards the particle i* is written under the assumption 

that on reaching the surface of the particle the ions transfer their charge to it, and the 
surface reaction rate constants for the ions of both signs are qua1 to K /5/. 

We shall assume that no ions are formed at the surface s=O, that the particles have 
zero charge and that the electric field is known and equal to E',i.e. that when I= 0, we 
have the initial conditions 

I* z (U C bE) n* = 0, ey = 0, E = E”, 0 < Ed <u/b (2) 

Note that in writing Eqs.(l) and (2) we assumed that the contribution of diffusion towards 
thecompleteion flows I+ can be neglected. This requires that the condition Pe= MD>)1 
should hold, where L is the characteristic dimension of the problem. Since the problem in 
question has no characteristic geometrical dimension, it follows that the quality L represents 
the characteristic time needed for the state of equilibrium to be established (strictly 
speaking, this is attained in the limit as z-m), due to the processes of recombination of 
the ions and their precipitation on the particles. Therefore -L - u min (Tii, rrt) where tit = (an,)-', 
Z* = (4naDn&' are the characteristic times of change in ion concentration caused by their 
mutual recombination and precipitation on the particle, n, = I/@ is the equilibrium con- 
centration of the ions in the pure gas. 

For example, and c( 
m3/sec. /3/. 

for air under normal conditions we have b-2 x 10-P m2/V.sec - 2 x 10-12 
If a radioactive source is used for ionization with 8-4 ‘x iOL6 m_3/sec /4/, 

then =ii -4 x lo-3 sec. When the particle radius is lOmE m and their concentration is +,= lOa 
m-3, we have T* -20 sec. In this case (i-4 x lO-a m corresponds to the stream velocity of 
10 m/set. 

Let us introduce the following dimensionless quantities: 

eP 
* - =pb 

- a?’ 

and henceforth omit the asterisks. 
The parameter Y in gases under normal conditions falls within the range (0,1;1) /6/ and 

N - Zii/Z&, When the gases are sufficiently dense, the Langevin formula a=ar,=8neb yields 
y = 1, N = tiiir,. 

The system of Eqs.(l), (2) has no analytic solution and must be solved numerically for 
each set of defining parameters. The problem is, however, simplified when the parameters 
have their limiting values. 

For example, let Re,>i, i.e. let the stream velocity be much greater than the ion 
migration rate under the action of the electric field. When Pe,= aulD 21, the inequality 
follows directly from the relation Re,= Pe,Dl(abEO) and the assumed condition that a purely 
diffusive mechanism of charging the particle exists, which is true when D/(abEO)s,1. 

Applying the method of perturbations /7/ to problem (l), (2) written in dimensionless 
variables (3), we can represent all dependent variables in the form of the series 

(3) 
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The following closed system of equations is obtained for the first non-zero terms: 

d"o= i -qn$-ANna, d&b_ 
dx -&--"O& 

(4) 

The zeroth approximations in terms of the parameter i/Re, of the dimensionless concen- 
trations of the ions n* are the same, and are denoted by no. 

When the parameter N is vanishingly small, an analytic expression for the dependence of 
ep, on & can be obtained from (4) , as well as the corresponding relation +(E). correct apart 
from terms of order O(i/Re# 

Figs.l-4 (the solid lines) show the results of a numerical solution of problem (l), (2) 
for y= 0,25 which corresponds to dry air under normal conditions. Fig.1 shows the relations 
e/J (E) for the case N= 1, Rer = 1 for various value of K. The relations eP(h') given by Eq. 

(5) for the same values of K are shown by the dashed lines, The behaviour of the curves eP(@ 
obtained when solving problem (11, (21 and determined by (St, is the same. When E decreases 
from one to zero, which corresponds to a change of 5 from zero to infinity, the valueof Ien/ 
first increases, and then decreases to zero when E=O,r= W. 

Fig.1 

xm 

Fig.2 

pm 

For low values of the dimensionless reaction rate constant K, Eq.(3) yields a batter 
approximation to the relations ep(E) obtained by numerical methods, than in the case of 
large K. 

Fig.2 shows the dependence of the minimum charge of the particles within the stream 
e,, = min f+ on the quantity K for various values of the parameter N (the quantity e,, corre- 
spondsto marl+ 1, since e,,<O when E’>(1). For iV+j, the relation em(K) is monotonic and 
the absolute value of the minimum charge increases with as K increases. For sufficiently 
large values of N the relation Q,(K) has a minimum, but we have, in all cases, the passage 
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to a finite limit em twl as X increases. The dependence +(A? obtained by determining the 
extremum of the function (5) is showninFig.2 by the dashed line. The relation is also non- 
monotonic and has a minimum. When the dimensionless reaction rate constant K tends to zero, 
the maximum value of the absolute magnitude of the charge on the particles Ie, 1 obtained in 
theflow,also always tends to zero. 

Figs.3 and 4 show the dependence of the distance xTIL from the plane at which the charge 
on the particles reaches the maximum value in modulus , and of the dimensionless potential 
difference Q,= rp8nebn0/(uE) on the parameter llRer for various values of N, where K= w. We 

see that the quantity z,,, depends weakly on the parameters N,Re, and x,*-1, and the presence 

of the aerosol particles has a considerable effect on the relation ~Pn,(i/~es) only when N> i 
and Re,<2. 
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THE PROBLEM OF THE FILLING OF A LIMITED VOLUME BY A 
VISCOUS HEAT-CONDUCTING GAS* 

S.YA. BELOV 

A system of differential equations, the solution of which describes the one-dimensional 
motion of a viscous heat-conducting ideal polytropic gas is investigated /l, 21. It is proved 
that the problem of the filling of a limited volume by a gas is uniquely solvable. An ex- 
istence theorem is established by the method of extending the solution that is local in time 
using global a priori estimates. A method of obtaining these estimates was described in /2/ 
for the equations of a viscous gas described in Lagrangian variables. The presence of pen- 
etrable walls mean% that the boundary conditions are non-uniform, and in mass Lagrangian 
variables the initial-boundary value problem is formulated in a region with curvilinear 
boundaries. This requires the development of a technique for proving the estimates. The 
correctness in time as a whole of the problem of the filling of a volume by a viscous gas has 
only been investigated previously for the more simple models, and for the system of equations 
of a heat-conducting gas in the case when the thermal conductivity depends in a special way 
on the temperature /3, 4/. Other formulations of the problem of the flows of a viscous gas 
in regions with penetrable boundaries were studied in /3-6,'. 

1. Formulation of the problem and fundamental results. The one-dimensional 
motion of a viscous ideal polytropic gas in mass Lagrangian coordinates is described by the 
following system of equations /l, 2/: 


